一种任意无向图的R边连通扩充算法An Enhanced R-side Connected Graph as the Calculating Method of Arbitrary Non-directed Graph
刘惠敏;安瑛晖;
摘要(Abstract):
本文提出了一个最小地扩充任意无向连通图为 R 边连通图的有效算法RMA。该算法采用了“先满足必要条件,再满足充要条件”的指导思想。对于一个任意无向连通图,首先将图中各点扩充到它所要求的最小度,然后检查它是否满足充要条件,如果不满足,则将该图分解,再根据最优程则,增加扩充边。将图合并,最后进行可行删除,解雇增广点,得到一个最小 R 边连通图。
关键词(KeyWords): R 边连通图;可行删除;解雇增广
基金项目(Foundation):
作者(Author): 刘惠敏;安瑛晖;
Email:
DOI:
参考文献(References):
- [1] F.T.Boesch,F.Harary and J.A.Kabell.Graphs as models of Communication Network Vulnerability:Connectivity and Persistence.Networks.Vol.11(1981) ;57~63.
- [2] O.Schumacher.An Algorithm for Construction of a K-connected Graph with Minimum Number of Edgds and Quasiminimal Diameter.Networks.Vol.14,(1984) ;63~74.
- [3] B.Bollobos.Extremat Graph Theory.Academic Press.London.(1978)
- [4] W.Mader.A Reduction Method for Edge Connectivity in Graph.Annals of Discrete Math.Vol.3,1978;145~164.
- [5] Guo-Ray Cai and Y.G.Sun.The Minimum Augmentation of Any Connected Graph to K-Edge-Connected Graph.Proc,lnt Symposion on cir and sys.1986;984~987
- [6] M.Habib B.Deroche.A Construction Method for Minimalty K-Edge-Connected Graphs.Annals of Discrete Math Vol.9,1980;194~204