粒子群算法和灰狼算法的融合Research on the fusion of PSO and GWO
索美霞,张永立,李梦婕,易国荣
摘要(Abstract):
为了解决传统粒子群算法(PSO)容易“早熟”、陷入局部最优以及灰狼算法(GWO)收敛速度慢的问题。首先,采用GWO算法的个体极值更新策略来实现个体包围式向最优值趋近,融入PSO算法的速度更新策略来实现群体向最优值的趋近,并且在原始粒子群算法基础上加入线性惯性权重递减来提高算法的收敛速度,从而提出了一种基于灰狼算法和改进的粒子群算法(IPSO)的融合优化算法(GW-IPSO);其次,通过6个经典算例进行仿真试验,将融合算法与PSO算法、IPSD算法、灰狼和粒子群结合算法(GW-PSO)进行对比;最后,应用融合算法对二级直线倒立摆的控制器设计进行参数寻优。结果表明:针对6个标准测试函数,混合算法的30次试验结果平均值更接近最优值,且标准差几乎都是最小的;应用在倒立摆控制问题上,系统在5 s左右进入稳定状态。融合后的GW-IPSO算法能够在一定程度上避免早熟和陷入局部极值的问题发生,并且能够很好地应用于控制器设计过程中参数寻优问题。
关键词(KeyWords): 算法理论;粒子群算法;灰狼算法;倒立摆;控制器设计
基金项目(Foundation): 珠海市科技计划项目(ZH22036201210019PWC);; 2021年天津市研究生科研创新项目(2021YJS02B16);; 北京理工大学珠海学院高等教育教学研究和改革项目(2021015JXGG)
作者(Author): 索美霞,张永立,李梦婕,易国荣
参考文献(References):
- [1] 范伟伦,卫鑫,熊威.模拟退火——免疫粒子群融合算法研究[J].中国设备工程,2021(19):99-101.
- [2] 杜卫康.基于GWO-PSO融合算法的USV群体对抗动态避障与协同围捕[D].长春:吉林大学,2022.DU Weikang.USV Group Adversarial Dynamic Obstacle Avoidance and Cooperative Hounding Based on the GWO-PSO Fusion Algorithm[D].Changchun:Jilin University,2022.
- [3] 梁景泉,周子程,刘秀燕.粒子群算法改进灰狼算法的机器人路径规划[J].软件导刊,2022,21(5):96-100.LIANG Jingquan,ZHOU Zicheng,LIU Xiuyan.Robot path planning based on particle swarm optimization improved grey wolf algorithm[J].Software Guide,2022,21(5):96-100.
- [4] 王鹏飞,任丽佳,高燕.基于改进收缩因子的粒子群优化算法[J].电子科技,2022,35(5):14-18.WANG Pengfei,REN Lijia,GAO Yan.PSO algorithm based on improved contraction factor[J].Electronic Science and Technology,2022,35(5):14-18.
- [5] 李二超,高振磊.改进粒子速度和位置更新公式的粒子群优化算法[J].南京师大学报(自然科学版),2022,45(1):118-126.LI Erchao,GAO Zhenlei.Particle swarm optimization algorithm with improved particle velocity and position update formula[J].Journal of Nanjing Normal University (Natural Science Edition),2022,45(1):118-126.
- [6] 赵经纬,张君毅,李佳.基于改进粒子群的分布式通信干扰资源分配[J].河北工业科技,2023,40(1):52-58.ZHAO Jingwei,ZHANG Junyi,LI Jia.Distributed communication jamming resource allocation method based on improved particle swarm optimization[J].Hebei Journal of Industrial Science and Technology,2023,40(1):52-58.
- [7] 王莹.粒子群算法优化的改进及其在直线二级倒立摆系统中的应用研究[D].青岛:山东科技大学,2020.WANG Ying.Improvement of Particle Swarm Optimization and Its Application in Linear Double Inverted Pendulum System[D].Qingdao:Shandong University of Science and Technology,2020.
- [8] 彭慧刚.改进粒子群算法在二级倒立摆控制系统中的研究[D].武汉:湖北工业大学,2016.PENG Huigang.Research on Improved Particle Swarm Optimization Algorithm in Double Stage Inverted Pendulum Control System[D].Wuhan:Hubei University of Technology,2016.
- [9] 王万良,金雅文,陈嘉诚,等.多角色多策略多目标粒子群优化算法[J].浙江大学学报(工学版),2022,56(3):531-541.WANG Wanliang,JIN Yawen,CHEN Jiacheng,et al.Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J].Journal of Zhejiang University (Engineering Science),2022,56(3):531-541.
- [10] 董如意,唐玉玉,桑可可.基于改进粒子群算法的PID控制器参数整定优化[J].吉林化工学院学报,2022,39(7):18-21.DONG Ruyi,TANG Yuyu,SANG Keke.Optimization design of PID controller based on particle swarm optimization algorithm[J].Journal of Jilin Institute of Chemical Technology,2022,39(7):18-21.
- [11] 邵士凯,石伟龙,杜云.基于粒子群算法的固定时间多约束无人机轨迹规划[J].河北科技大学学报,2022,43(3):259-267.SHAO Shikai,SHI Weilong,DU Yun.Fixed time multi-constraint UAV trajectory planning based on particle swarm optimization[J].Journal of Hebei University of Science and Technology,2022,43(3):259-267.
- [12] 李真,王帆,王冉珺.一种结合灰狼算法的粒子群优化算法[J].计算机测量与控制,2021,29(10):217-222.LI Zhen,WANG Fan,WANG Ranjun.An improved particle swarm optimization algorithm[J].Computer Measurement & Control,2021,29(10):217-222.
- [13] 李佳园,李耀南,惠继录.灰狼优化算法的应用综述[J].数字技术与应用,2022,40(9):10-13.
- [14] 陈贞,闫明晗.一种改进的灰狼优化算法[J].延边大学学报(自然科学版),2022,48(3):250-254.CHEN Zhen,YAN Minghan.An improved grey wolf optimization algorithm[J].Journal of Yanbian University (Natural Science Edition),2022,48(3):250-254.
- [15] 于蕾,方蒽,纪雯.一阶倒立摆系统建模与仿真研究[J].电子世界,2021(15):25-26.
- [16] 周长斌.基于直线电机倒立摆的控制算法及控制器设计[D].合肥:合肥工业大学,2018.ZHOU Changbin.Control Algorithm and Controller Design Based on Inverted Pendulum System of Linear Motor[D].Hefei:Hefei University of Technology,2018.
- [17] 王鹏飞,杜忠华,牛坤,等.基于改进粒子群算法的倒立摆LQR优化控制[J].计算机仿真,2021,38(2):220-224.WANG Pengfei,DU Zhonghua,NIU Kun,et al.LQR optimal control of inverted pendulum based on improved particle swarm optimization algorithm[J].Computer Simulation,2021,38(2):220-224.
- [18] 张永立.空间多级倒立摆非线性控制方法研究[D].大连:大连理工大学,2011.ZHANG Yongli.Research on Nonlinear Control Technique for Spherical Mult-rod Inverted Pendulum System[D].Dalian:Dalian University of Technology,2011.
- [19] 张继荣,张天.基于改进粒子群算法的PID控制参数优化[J].计算机工程与设计,2020,41(4):1035-1040.ZHANG Jirong,ZHANG Tian.Optimization of PID control parameters based on improved particle group algorithm[J].Computer Engineering and Design,2020,41(4):1035-1040.
- [20] 贺迟来,徐晓龙,钟晓伟,等.基于改进粒子群算法的旋转倒立摆PID参数整定[J].自动化技术与应用,2021,40(12):10-15.HE Chilai,XU Xiaolong,ZHONG Xiaowei,et al.PID parameters tuning of rotary inverted pendulum based on improved particle swarm optimization algorithm[J].Techniques of Automation and Applications,2021,40(12):10-15.
- [21] 庞新雨,范继祥,王阿南.基于PSO-LQR的二级旋转倒立摆控制系统设计[J].哈尔滨师范大学自然科学学报,2019,35(5):26-32.PANG Xinyu,FAN Jixiang,WANG Anan.Design of control system based on PSO-LQR for double rotary inverted pendulum[J].Natural Science Journal of Harbin Normal University,2019,35(5):26-32.第40卷第3期