基于支持向量机模型的地铁进站客流量预测Prediction of subway entry flow based on support vector machine model
郭文,肖为周,秦菲菲
摘要(Abstract):
为了更精确地预测短期站点客流量,动态调整城市轨道交通的日常客流方案,采用支持向量机模型对预测地铁客流量。首先,通过对AFC数据分析,利用上周同期进站量、前一天同期进站量、当日前两个时段进站量以及高峰和非高峰时段参数作为模型的输入变量;然后,构造支持向量机预测模型并运用粒子群算法优化模型(PSO-SVM模型),实现地铁站点客流量预测,并进行不同模型预测误差的比较分析;最后,以苏州地铁数据为例,预测汾湖路地铁站的进站客流量。结果表明,优化模型能够有效改善预测误差,预测结果更为准确,证明PSO-SVM方法能有效用于地铁进站客流量的预测研究,为地铁进站客流量预测提供了新的方法。
关键词(KeyWords): 交通运输工程;城市轨道交通;客流预测;支持向量机;进站客流量
基金项目(Foundation): 国家自然科学基金青年项目(71301112)
作者(Author): 郭文,肖为周,秦菲菲
参考文献(References):
- [1]邵星杰,张宁,邱华瑞.城市轨道交通客流时空演变规律建模研究[J].都市快轨交通,2015,28(2):65-69.SHAO Xingjie,ZHAN Ning,QIU Huarui.Modeling research on spatial and temporal evolution of passenger flows of urban rail transit[J].Urban Rapid Rail Transit,2015,28(2):65-69.
- [2]王莹,韩宝明,张琦,等.基于SARIMA模型的北京地铁进站客流量预测[J].交通运输系统工程与信息,2015,15(6):205-211.WANG Ying,HAN Baoming,ZHANG Qi,et al.Forecasting of entering passenger flow volume in Beijing subway based on SARIMA model[J].Journal of Transportation Systems Engineering and Information Technology,2015,15(6):205-211.
- [3]孟品超,李学源,贾洪飞,等.基于滑动平均法的轨道交通短时客流实时预测[J].吉林大学学报(工学版),2018,48(2):448-453.MENG Pinchao,LI Xueyuan,JIA Hongfei,et al.Short-time rail transit passenger flow real-time prediction based on moving average[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(2):448-453.
- [4]李春晓,李海鹰,蒋熙,等.基于广义动态模糊神经网络的短时车站进站客流量预测[J].都市快轨交通,2015,28(4):57-61.LI Chunxiao,LI Haiying,JIANG Xi,et al.Short-term entrance passenger flow forecast at urban rail transit station based on generalized dynamic fuzzy neural networks[J].Urban Rapid Rail Transit,2015,28(4):57-61.
- [5]樊娜,赵祥模,戴明,等.短时交通流预测模型[J].交通运输工程学报,2012,12(4):114-119.FAN Na,ZHAO Xiangmo,DAI Ming,et al.Short-time traffic flow prediction model[J].Journal of Traffic and Transportation Engineering,2012,12(4):114-119.
- [6]姚智胜,邵春福,熊志华.基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J].中国管理科学,2007,15(1):64-68.YAO Zhisheng,SHAO Chunfu,XIONG Zhihua.Research on short-term traffic flow combined forecasting based on wavelet package and least square support vector machines[J].Chinese Journal of Management Science,2007,15(1):64-68.
- [7]王惟,李志鹏.粒子群优化支持向量机的交通量预测方法[J].山西大同大学学报(自然科学版),2015,31(2):25-28.WANG Wei,LI Zhipeng.Traffic prediction method based on particle swarm optimized support vector machine[J].Journal of Shanxi Datong University(Natural Science),2015,31(2):25-28.
- [8]邓浒楠,朱信山,张琼,等.基于多核最小二乘支持向量机的短期公交客流预测[J].交通运输工程与信息学报,2012,10(2):84-131.DENG Hunan,ZHU Xinshan,ZHANG Qiong,et al.Prediction of short-term pubic transportation flow based on multiplekernel least square support vector machine[J].Journal of Transportation Engineering and Information,2012,10(2):84-88.
- [9]刘润莉.地铁运营客流量计算模型研究[D].成都:电子科技大学,2012.LIU Runli.Research on Calculation Model of Passenger Flow in Subway Operation[D].Chengdu:University of Electronic Science and Technology of China,2012.
- [10]赵钰棠,杨信丰,杨柯.基于支持向量机的地铁客流量预测[J].都市快轨交通,2014,27(3):35-38.ZHAO Yutang,YANG Xinfeng,YANG Ke.Subway traffic prediction based on support vector machine[J].Urban Rapid Rail Transit,2014,27(3):35-38.
- [11]顾嘉运,刘晋飞,陈明.基于SVM的大样本数据回归预测改进算法[J].计算机工程,2014,40(1):161-166.GU Jiayun,LIU Jinfei,CHEN Ming.A modified regression prediction algorithm of large sample data based on SVM[J].Computer Engineering,2014,40(1):161-166.
- [12]王夏秋.城市轨道交通线路短期客流预测研究[D].南京:东南大学,2017.WANG Xiaqiu.Research on Short-time Passenger Flow Forecast of Urban Rail Transit Line[D].Nanjing:Southeast University,2017.
- [13]张丽平.粒子群优化算法的理论与实践[D].杭州:浙江大学,2005.ZHANG Liping.The Theorem and Practice Upon the Particle Swarm Optimization Algorithm[D].Hangzhou:Zhejiang University,2005.
- [14]张庆,刘丙杰.基于PSO和分组训练的SVM参数快速优化方法[J].科学技术与工程,2008,8(16):4613-4616.ZHANG Qing,LIU Bingjie.Fast optimization method for parameter of SVM based on PSO and divided training[J].Science Technology and Engineering,2008,8(16):4613-4616.
- [15]李得伟,颜艺星,曾险峰.城市轨道交通进站客流量短时组合预测模型[J].都市快轨交通,2017,30(1):54-59.LI Dewei,YAN Yixing,ZENG Xianfeng.Combined short-term prediction model of station entry flow in urban rail transit[J].Urban Rapid Rail Transit,2017,30(1):54-59.
- [16]张晚笛,陈峰,王子甲,等.基于多时间粒度的地铁出行规律相似性度量[J].铁道学报,2018,40(4):9-17.ZHANG Wandi,CHEN Feng,WANG Zijia,et al.Similarity measurement of metro travel rules based on multi-time granularties[J].Journal of The China Railway Society,2018,40(4):9-17.